AMINO ACID AND MINERAL COMPOSITIONS

OF Alchemilla tredecimloba

M. S. Babayan and V. A. Chelombit'ko

UDC 615.322:582.734.4:543.06

Alchemilla tredecimloba L. (Rosaceaea) is endemic to the western Caucasus. This unstudied species is of definite interest considering that the aggregate species *A. vulgaris* is included in the European Pharmacopeia [1]. The goal of the present work was to establish the amino acid and mineral compositions of the aerial part of *A. tredecimloba*. Samples of raw material were collected from the wild population in Daut gorge of Karachaevo-Cherkessy Republic.

The qualitative and quantitative amino acid compositions were determined as before [2].

The study of the amino acid composition of *A. tredecimloba* identified 15 amino acids (Table 1), 9 of which were essential: valine, threonine, methionine, isoleucine, leucine, lysine, phenylalanine, histidine, and arginine. The total content of amino acids was 7.26%, of which essential amino acids were 4.11% (or 56.61% of the total amount).

The macro- and microelement compositions of *A. tredecimloba* were determined by atomic absorption spectroscopy on a DFS-8-1 instrument using state standard minerals and ores as references [3]. Raw material from *A. tredecimloba* was ashed beforehand in porcelain crucibles at 450-500°C to constant weight.

The method was based on total evaporation of an analytical portion from the well of a carbon electrode (50 elements) in an AC electric-arc plasma (DG-2). The method could determine 21 elements. Table 2 gives their contents in various plant organs.

The content of potentially toxic and toxic metals decreased in the order Al > Ti > Ga > Ag > Pb. The average contents of toxic metals were below the minimum acceptable concentrations [4].

Amino acid	Amino acid content			Amino acid content	
	g, %	g/kg	Amino acid	g, %	g/kg
Aspartic acid	0.44	4.40	Isoleucine	0.38	3.80
Threonine	0.57	5.68	Leucine	0.71	7.15
Serine	0.46	4.62	Tyrosine	0.28	2.78
Glutamic acid	1.03	10.28	Phenylalanine	0.47	4.75
Glycine	0.39	3.92	Histidine	0.29	2.93
Alanine	0.53	5.33	Lysine	0.63	6.35
Valine	0.50	5.03	Arginine	0.55	5.51
Methionine	0.01	0.12			

TABLE 1. Amino Acid Composition of Alchemilla tredecimloba L. Leaves

Pytigorsk State Pharmaceutical Academy, Pyatigorsk, 357500, prosp. Kalinina, 11, fax (87933) 32 31 16, e-mail: vachelombitko@mail.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 198-199, March-April, 2007. Original article submitted December 26, 2006.

TABLE 2. Macro- and Microelement (Compositions of Alchemilla tredecimloba L.
------------------------------------	--

	Content in various plant parts, %					
Element	roots	stems	leaves	flowers		
Cu	0.005	0.005	0.005	0.005		
Zn	0.015	0.01	0.01	0.01		
Pb	-	0.0006	0.0006	0.0006		
Ag	0.00001	0.00001	0.000015	0.000015		
Мо	0.00005	0.00005	0.0003	0.003		
Ga	0.0001	-	-	-		
Ba	0.05	0.06	0.05	0.05		
Mn	0.06	0.06	0.08	0.1		
Со	-	-	-	0.0001		
Ni	0.0002	0.0003	0.0005	0.0006		
Ti	0.02	0.02	0.02	0.02		
V	0.0001	0.0002	0.0002	0.0002		
Cr	0.0003	0.0003	0.0003	0.0005		
Fe	0.5	0.2	0.3	0.5		
В	0.01	0.01	0.03	0.02		
Κ	30	30	20	20		
Na	0.6	0.6	0.6	0.6		
Ca	15	20	30	30		
Mg	6	5	6	6		
Al	0.2	0.1	0.1	0.15		
Si	1	1	2	1		

REFERENCES

- 1. S. K. Cherepanov, *Vascular Plants of Russia and Adjacent States* [in Russian], Mir i Sem'ya, St. Petersburg (1995).
- 2. T. V. Orlovskaya and V. A. Chelombit'ko, *Khim. Prir. Soedin.*, 194 (2007).
- 3. *Methodical Instructions for Atomic Absorption Methods of Determining Toxic Elements in Food Products and Food Raw Materials* [in Russian], State Committee of RF Sanepidnadzor, Moscow (1992).
- 4. SanPin 2.3.2. 1078-01, Vegetable Raw Material and Food Products, Moscow (2001).